Sohag University	Second Year
Faculty of Engineering	Electronics (2)
Electrical Engineering Department	SHEET _ 3

Q1) a- Determine the following ac values for the amplifier in Figure below1) R_{in}(base)2) R_{in}3) R_{out}4) A_v5) A_i6)A_p

b- Assume that a 600 Ω , 12 μ Vrms voltage source is driving the amplifier in Figure below, Determine the overall voltage gain by taking into account the attenuation in the base circuit and find the total output voltage (ac and dc). What is the phase relationship of the collector signal voltage to the base signal voltage?

Q2) The amplifier in Figure below has a variable gain control, using a 100Ω potentiometer for R_E Determine the maximum and minimum gains for this unloaded amplifier. What is the gain when the potentiometer adjusted to the midpoint?

Q3) Determine for the unloaded emitter-follower in Figure below								
1) R _{in} (base)	2) R _{in}	3) R _{out}	4) exact A _v	5) A _i	6)Ap			

Q4) Find R_{in}, A_v, A_i and A_p for the unloaded amplifier in Figure below

Q5) If the multistage amplifier in Figure below is driven by a 75 Ω ,50 μ Vrms source and the second stage is loaded with an R_L =18k Ω determine voltage gain of each stage and overall voltage gain

SUMMARY OF THE BJT TRANSISTOR AMPLIFIER and Biasing CIRCUITS

	CE	СС	СВ
Voltage gain, A_v	High $R_{\rm C}/r_e'$	Low $\cong 1$	High $R_{\rm C}/r_e'$
Current gain, $A_{i(max)}$	High eta_{ac}	High eta_{ac}	Low $\cong 1$
Power gain, A _p	Very high $A_i A_v$	$\begin{array}{l} \text{High} \\ \cong A_i \end{array}$	$High \cong A_{v}$
Input resistance, $R_{in(max)}$	Low $eta_{ac}r'_e$	High $eta_{ac}R_{ m E}$	Very low r'_e
Output resistance, Rout	High R _C	Very low $(R_s/\beta_{ac}) \parallel R_{\rm E}$	High R _C

VOLTAGE-DIVIDER BIAS

• Q-point values $(I_C \cong I_E)$ • Collector current: $I_C \cong \frac{V_{\text{TH}} - V_{\text{BE}}}{R_E + R_{\text{TH}}/\beta_{\text{DC}}}$ where $R_{\text{TH}} = \frac{R_2}{R_1 + R_2}$

and
$$V_{\text{TH}} = R_{\text{TH}}V_{\text{CC}}$$

Collector-to-emitter voltage:

 $V_{\rm CE} \cong V_{\rm CC} - I_{\rm C}(R_{\rm C} + R_{\rm E})$

BASE BIAS

- Q-point values $(I_{\rm C} \equiv I_{\rm E})$
- Collector current:

L

$$_{\rm C} = \beta_{\rm DC} \left(\frac{V_{\rm CC} - V_{\rm BE}}{R_{\rm B}} \right)$$

Collector-to-emitter voltage:

$$V_{\rm CE} = V_{\rm CC} - I_{\rm C} R_{\rm C}$$

EMITTER BIAS

- Q-point values $(I_{\rm C} \cong I_{\rm E})$
- Collector current:

$$I_{\rm C} \cong \frac{V_{\rm EE} - V_{\rm BE}}{R_{\rm E} + R_{\rm B}/\beta_{\rm DC}}$$

Collector-to-emitter voltage:

$$V_{\rm CE} \cong V_{\rm CC} + V_{\rm EE} - I_{\rm C}(R_{\rm C} + R_{\rm E})$$

COLLECTOR-FEEDBACK BIAS

VCC

RB

 $\leq R_{\rm C}$

- Q-point values $(I_{\rm C} \equiv I_{\rm E})$
- Collector current:

$$_{\rm C} = \frac{V_{\rm CC} - V_{\rm BE}}{R_{\rm C} + R_{\rm B}/\beta_{\rm DC}}$$

Collector-to-emitter voltage: $V_{\rm CE} = V_{\rm CC} - I_{\rm C} R_{\rm C}$